

	結論	27/27
•	線形負荷試験では、 塑性ひずみ速度発生方向は 降伏関数と関連流動則より計算した値と一致した	
•	非線形負荷試験と線形負荷試験を比較した結果より 同一の応力状態でも塑性ひずみ速度発生方向は異), なる
•	同一の応力状態における塑性ひずみ速度と ひずみ速度の発生方向を比較すると, 負荷状態に依らず <i>θとθ^pの</i> 関係は一対一の対応がお	ある
	bcc構造とfcc構造の材料を比較すると, bcc構造の材料は尖り点の影響を受けにくい	

Shizuoka University